ConsistEdit来了:无需训练,实现高精度、高一致性的视觉编辑新范式
ConsistEdit来了:无需训练,实现高精度、高一致性的视觉编辑新范式无需额外训练即可适配预训练生成模型的编辑方法,凭借灵活、高效的特性,已成为视觉生成领域的研究热点。这类方法通过操控 Attention 机制(如 Prompt-to-Prompt、MasaCtrl)实现文本引导编辑,但当前技术存在两大核心痛点,严重限制其在复杂场景的应用
无需额外训练即可适配预训练生成模型的编辑方法,凭借灵活、高效的特性,已成为视觉生成领域的研究热点。这类方法通过操控 Attention 机制(如 Prompt-to-Prompt、MasaCtrl)实现文本引导编辑,但当前技术存在两大核心痛点,严重限制其在复杂场景的应用
近期,阿里巴巴 ROLL 团队(淘天未来生活实验室与阿里巴巴智能引擎团队)联合上海交通大学、香港科技大学推出「3A」协同优化框架 ——Async 架构(Asynchronous Training)、Asymmetric PPO(AsyPPO)与 Attention 机制(Attention-based Reasoning Rhythm),
2017 年,一篇标题看似简单、甚至有些狂妄的论文在线上出现:《Attention Is All You Need》。
稀疏激活的混合专家模型(MoE)通过动态路由和稀疏激活机制,极大提升了大语言模型(LLM)的学习能力,展现出显著的潜力。基于这一架构,涌现出了如 DeepSeek、Qwen 等先进的 MoE LLM。
2017 年,一篇《Attention Is All You Need》论文成为 AI 发展的一个重要分水岭,其中提出的 Transformer 依然是现今主流语言模型的基础范式。尤其是在基于 Transformer 的语言模型的 Scaling Law 得到实验验证后,AI 领域的发展更是进入了快车道。
你有没有想过,一个因为开发作弊工具被哥伦比亚大学开除的 21 岁学生,竟然能在短短几个月内获得 a16z 领投的 1500 万美元融资?
越通用,就越World Models。 我们知道,大模型技术爆发的原点可能在谷歌一篇名为《Attention is All You Need》的论文上。
Transformer已满8岁,革命性论文《Attention Is All You Need》被引超18万次,掀起生成式AI革命。Transformer催生了ChatGPT、Gemini、Claude等诸多前沿产品。更重要的是,它让人类真正跨入了生成式AI时代。
「未来,99% 的 attention 将是大模型 attention,而不是人类 attention。」这是 AI 大牛 Andrej Karpathy 前段时间的一个预言。这里的「attention」可以理解为对内容的需求、处理和分析。也就是说,他预测未来绝大多数资料的处理工作将由大模型来完成,而不是人类。
Attention 还在卷自己。